Makefile & Cmake 使用
先放一个现成的CMakeLists.txt模板## 只需修改前三行set(_PROJECT_NAME_ "project_name_x") # 设置project的名字set(_EXE_NAME_ "exe_name_x") # 设置target的名字set(_SRC_FILE_NAME_ "file_path_x") # 设置target源代码所在的位置cmake_minimum_required(VERSION 3.15)project(${_PROJECT_NAME_})set(CMAKE_CXX_STANDARD 17)set(CMAKE_CXX_STANDARD_REQUIRED ON)# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Werror -O3")add_executable(${_EXE_NAME_})aux_source_directory(${_SRC_FILE_NAME_& ...
Stochastic Process 1 Markov Property (马尔可夫性)
离散时间马尔可夫链 (Markov Chain)一般来讲,为了化简一些过程,需要对对象进行一些假设,使其简单(无记忆性)、被大量随机过程满足、应用广泛。一个较好的假设,是现在的结果只依赖于最近一次的结果。
定义:设具有可数样本空间E的随机序列 ${X_m}_{m=0}^\infty$ 满足:
$\forall k, \forall m_1<\cdots <m_{k+1},$
$\mathbb{P}(X_{m_{k+1}}=n_{k+1}|X_{m_{k+1}}=n_{k+1},\cdots ,X_{m_1}=n_1)=\mathbb{P}(X_{m_{k+1}}=n_{k+1}|X_{m_{k+1}}=n_{k+1})$;
则称 ${X_m}_{m=0}^\infty$ 为离散时间Markov链。化简条件后:
$\forall k,\ \ \mathbb{P}(X_{m_{k+1}}=n_{k+1}|X_{m_{k+1}}=n_{k+1},\cdots ,X_{m_1}=n_1)=\mathbb{P}(X_{m_{k+1}}=n_{k+1}|X_{m_{k+1}}=n_{k ...